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INVESTIGATION OF SOME WAKE VORTEX CHARACTERISTICS OF
AN INCLINED OGIVE-CYLINDER BODY AT MACH
NUMBER 1.98

By Leland H. Jorgensen and Edward W. Perkins
SUMMARY

For en inclined body of revolution st a free-stresm Mach number of -
1.98, pitot-pressure distributions in the flow field, pressure distribu-
tions over the body, and downwash distributions through the shed vortices
have been measured. The body consisted of a fineness-ratio-3, circular-
arc, ogival nose tangent to a cylindrical afterbody 7.3 diameters long.

The free-stream Reynolds numbers, based on body diameter, were 0.15%x108

end 0.44x10%, and the angle-of-attack range was from 5° to 20°, Pressure
distributions on the body surface have been used in conjunction with flow-
field contour plots of constant pitot pressure to determine the epproximste
locations at which the vortices left the body surface and their paths
downstream.

To aid in the study of the experimentsl data, expressions have been
written for the flow sbout a simple theoretical model in which the induced
flow field in any crossflow plane slong the cylindricel afterbody is
represented by the incompressible steady potentisl flow around & cylinder
in the presence of two symmetricsl vortices of equal strength. By the use
of veloeclty end vortex strength formulae resulting from consideration of
this theoretical model, vortex paths which sgree well with the experimental
paths have been computed. However, in computing these paths, starting
vortex positions snd strengths determined from experiment were used, since =
there ig no relisble theoretical method for determining these stearting
conditions.

Comparisons of theoretical and experimental downwash engle distribu-
tions along e line through the vortex centers illustrate the inadequacy
of the sometimes-used potential flow about a cylinder which fails to
account for the presence of vortices in the flow fleld. ZExcept through
and between the vortex cores, the downwash can be closely computed by
assuming two symmetrical potential vortices in the flow field. If the
sizes of the core radii are known, the agreement of theory with experiment
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both through end between the cores cen be improved by the assumption of
vigcous rather than potentisl vortices in the field. ’

INTRODUCTION — -

One phase of the general problem of the interference between com- -
ponent parts of eircraft that has receilved little attention thus far is | ' ' '
the interference effects resulting from the vortices shed from a body o
of revolution at large sngles of attack. Wind-tunnel tests have shown _ = _ -
that these vortices can have & large effect upon the forces developed on
wing and tail surfaces. Fortunately, techniques are available for esti-
mating the forces developed on the wing and tail surfaces provided the -
strengths and positions of the body vortices are known (see, e.g., ref. 1),
Although, as yet, there 1s no rigorous theoretlcal method for predicting
either the strengths or the positions of the vortices, certain simplified
methods for estimating these characteristics can be suggested.

The purpose of this report is twofold: first; to present experimental
results of flow-field characteristics about an inclined body of revolu-
tion and second; to assess the adequacy of a simplified method of esti- -
mating these characteristics. To this end an inclined body of revolution -
has been utilized for obtaining measurements of body pressure distribu- =
tions, paths of the shed vortices, and downwash distributions through -
the vortex cores. Comparisons of computed vortex paths and downwash _
distributions are msde with the resulis of the experimental measurements.

'ii||

SYMBOLS
A reference area, me? : ) =
a radius of cylindrical portion of body
c a constant of integration o _ o _ =
Cy normal-force coefficient, Egﬁ - o -
CNP normel~force coefficient by Tsien's potential theory B
Cp pressure coefficient, E—ésgg e : - ' ;;
a body dlameter - .
A body length - o -

in length of ogival nose . = =
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Py

Re

XyVs2

X,r,6

free-stream Mach number
normal force

local static pressure on bhody
free-stream static pressure

pitot pressure in body flow field (measured parsllel to body
axis)

free-stream total pressure
free-stream dynemic pressure
free-gtream Reynolds number per inch
core radius of viscous vortex

radial distance from vortex center to point ¥,z 1in crossflow
Pplane

position of a point in crossflow plene, y + iz
time of vortex growth

induced velocities in y and z directions, respectively
(see sketch (a) p. 6)

free-stream velocity

crossflow velocity, Vgosin o 3 Vo

vortex velocity in crossflow plane, Nv2 + w2

Cartesian coordinates of point in space, origin at nose vertex,
X &axls coincldent with body axis, z axis perpendicular to
x axis in pitch plane. (See sketch (a) p. 6)

cylindrical coordinates of point in space (origin at nose
vertex, x axis coincident with body axis, and 6 = 0°
in crossflow plane on windward side)

angle of attack

circulation strength
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€ local flow (downwash) angle with respect to free-gtream
direction, o - LA
Vo
€ position of vortex center in crossflow plane, & + if
LyEsm Cartesian coordinates of vortex filsment position (referred

to body axis with origin at nose)

v kinematic viscosity of air

p free-gtream ailr densilty

g sidewash angle with respect to free-stresm direction, %;
o

V] potential functlon in crossflow plane

¥ stream function in crossflow plane

Subscripts
X conditions at "x" distance from nose vertex

n=1,2,8,4 identifies real and image vortices -(see sketch (b) p. T)

EXPERTMENTAL: CONSIDERATIONS

Apparstus =

The experimental investigation wes conducted in the Ames 1- by 3-
foot supersonic wind tunnel No. l. This tunnel is a closed-circuilt
varieble-pressure tunnel in which the Reynolds number is changed by varylng
the total pressure within the approximste limits of one-fifth of an atmos-
phere to two atmospheres. Mach numbers between 1.2 and 2.5 are obtained
by adjustment of the upper and lower Tlexible steel plates of the nozzle.

The model tested had a fineness-ratio-3, circular-arc, ogival nose
tengent to a cylindrical afterbody 7.3 dlameters long. A single row of
23 orifices extended longitudinelly over both nose and afterbody. The
model, which was construected of steel, was sting supported from the rear
and could be rotated 360° sbout its longitudinal axis by a mechanism
operated from outside the tunnel. Pertinent model dimensions are shown
in figure 1(a). ’




NACA RM ASBE3L

Sketches of the pitot-survey rake and survey cone which were used
to measure totel pressures and locel stresm angles, respectively, are
shown in figures 1(b) and 1(c). Photographs of the model and survey cone
apparatus are presented in figures 1(d) and 1(e). The pitot-survey rake
could be mounted on the body at vaerious model length positions and could
be rotated with the model about the model longitudinal axis. The survey
cone was supported on a movable strut projecting from the steel side
plate which replaced a tunnel window (fig. 1(d)). The cone could be
positioned laterslly in the tunnel to within *0.01l inch by the use of a
hend crank and lateral position scale (fig. 1(e)). In addition, the cone
could be pitched dgbout the lateral strut axis which passed midway between
the top and bottom (downwash) orifices of the cone. The pitch angle could
be set to within *0.05°.

Pressure leads from the body, pitot rake, and survey cone were con-
nected to a liquid manometer system. The pressures were photogrephically
recorded.

Tests and Results

A1l data were obtained for a free-stream Mach number of 1.98. The
model was tested at angles of sattack of 50, lO°, 15°, and 20° for a free-
stream Reynolds number of 0.39x102 per inch and at an angle of attack of
15° for a Reynolds mumber of 0.13x108 per inch (Reynolds numbers of
0.44x108% end 0.15x102 based on body diameter). Circumferential pressure
distributions were obtained by rotating the model through the desired
renge of circumferentisl angle (6). At various model length stations
(x/d) pitot-pressure distributions of the flow field were obtained also
by roteting the model about its longitudinal axis.

Downwash angle measurements were made along horizontal lines per-
pendicular to the model pitch plane and passing spproximately through
the vortex centers. The dowawash angle surveys were mede by the null-cone
method in which the cone is pitched until the pressures measured at the
top and bottom cone orifices indicate that the axis of the cone is alined
with the local stream. The repeatgbility of the measurements was checked
by making random reruns. Except at positions very close to the vortex
centers where the induced velocity gradlents were large, it was found that
the downwesh angles generally could be repeated to within +0.2°.-

All of the pressure data for the model surface were reduced to coef-
ficient form and are tabulsted in reference 2 and plotted in figures 2
through 6. The pitot-pressure dsta for the model flow field were reduced
to the form of the ratio of local pitot pressure to free-stream tatal
bressure, Pp/Pto- Contour plots of constant values of Pp/Pto are pre-
gsented in figures 2 through 6. Downwash angles, measured in degrees with
reference to the free-stream flow direction, ere listed in tables I and IT.

P
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THEORETICAL CONSIDERATIONS

Calculation of the interference effects resulting from the vortices
shed from & lifting body depends to a large extent upon an understanding
of the manner in which the vorticity is discharged from the body and upon
& satisfactory representation of the induced flow downstream of the body
nose. From visual flow studies (e.g., ref. 3) it is known that the phys-

ical flow field for moderate angles of attack is approximately as indicated

in sketch (a). The vortex formation for the body is somewhat similar to

Sketch (a).-~ Assumed flow field.

that for the slender trisngular plan-form wing considered by Brown and
Michael (ref. 4). For both the body and the wing two spiral vortex sheets
are produced, with flow separation occurring on the sides of the inclined
body and on the leading edges of the wing. The sheets roll up to form
two regions  of concentrated vorticity. The large flow sngles associated
with these reglons of vorticity are responsible for interference effects.
The complex nature of the actual flow precludes an exact representation _
of the three-dimensional flow field; hence, a simplified model of the
real flow must be chosen for study. In this section of the report expres-
sions for the flow about a simple theoretical, model are presented.

Theoretical Model and Basic Formulae for Potential
and Velocitles in the Flow Field

The assumption of slender-body theory that the flow is independent
of Mach number is mede. It is assumed that the induced flow field in
any crossflow plane along the cylindrical afterbody can be adequately
represented as the steady two-dimensional, incompressible potential flow
around s circular cylinder in the presence of two symmetrical vortices of
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of equel strength (sketch (b)) All
of the vorticlity is considered to be
concentrated in the two external
vortices, the effects of the feeding
vortex sheets being omitted. In
addition, it is sssumed that the
vortices need be considered only at
positions downstream of the nose-
cylinder Jjunction. The boundary
condition of tangentisl flow at the
body surface is satisfied by placing
image vortices within the body at
the gppropriate positions.

The complex potential equation
for the crossflow (sketch (b)) is

2
cp+i11r=-Vci< -%)-

aro (s - £1)(s - to)
axn (S - gz)(s - gé)

(1)

where |I'| 1is the magnitude of the
strength of each vortex; s =y + iz
is the position of a point in the

field; end €1, {2, {3, and {4 are

S 1

iZ,iq

Vortex
Eéptin,

Image vortex

v,¢

Crossflow
streamline

%;s¥p

Sketeh (b).- Approximate flow fleld
representation in a crossflow plane.

the positions of the real and image vortices, with {n = &n + inn.
Resulting expressions from which the velocities induced st any position
(y,2) can be calculated are as follows:

n=4
a®(y® - z3) r n Yy - &p
w = Vell - =) (-1) (2)
© (v + 22)° 2“;2; (z - m)° + (v - En)”
vo o Heeve inf( 1" “ (3)
(52 + 22)° B (z - 1% + (v - &,)°
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where .
Vc:'-Vchl -~
£e = -E1 _
Es = -t e ts

3:'—2—— -
£.° + ﬂ12 =
Ne = M1
and
a2n1 B
Na = M2

TEL2 1.2 -

Downwash and sidewash angles (with respect to the free-stream
direction) are then given approximately by e = o - (w/Vo) and o= (v/Vo). .

Velocity Relationships With Viscous Vortices -

Because of the effects of viscosity, downwash and sidewash distribu-
tions computed by equetions (2) and (3) cannot be expected to agree closely
with experiment near to and at the vortex centers. It is likely, however,
that the agreement of theory with experiment can be improved by substi-
tuting theoretical viscous vortices for potential vortices in the flow
field. TFor s single isolated viscous vortex i1t has been shown (ref. 5,

p. 592) that the velocity varies according to the expression,

A " (1)

B 2nry

where

Vp =NV + v : r

ry =N (z - 0% + (v - §)2 :

v = kinematic viscosity .
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and
t = time of wvortex growth

What is assumed to be a viscous vortex is, in essence, a vortex having

s "solid" core with potential outer flow joined by a tremsition region.
Tn this transition region, at some radiel distance, ry, from the vortex
center the velocity reaches & meximm. Using equation (4) it cen be
shown (see, e.g., ref. 6) that ryx can be expressed as & simple function
of time, t, by

Ty = g.eh(vt)l/z (5)

In this report, rx is assumed to be the core radius of the viscous
vortex.

For the complete flow field, if it is assumed that both the real
and image vortices have core radii which are equal in msgnitude, then
approximete formulse for induced velocities in the field can be written
as follows:

n=4
a2(y® - z%) T n y - & '
we=vVall+——————manr]|-=—) (-1) o (1 - &B)
© (52 + 22)° E“nZl (z - m)® + (v - tn)®
(6)
v o o Heefyz Lnf(-l)n Sl (1-¢eB) (7)
(y2 + 22)° 2l (z - )% + (v - &)°
where

B = _1,254(l/r*)2[(z - 'ﬂn)2 + (v - gn)z]

Tt is of note that these formulae, due to the linear superposition of a
viscous onto a potentisl flow system, are not mathematically rigorous

and do not satisfy the body boundary condition of zero normal velocity
for all values of 6 in the crossflow plane. However, at least for
positions through and in the vieinity of the vortices, their use can be
justified on the basis of good agreement between computed and experimental
downwash distributions (discussed later in the report) .




10 NACA RM ADDE3L

Vortex Strengths, Origins, and Paths

Vortex strengths.- For a theoretical model in which two symmetrical
vortices originate on and remain in the presence of an infinitely long
clrcular cylinder, the strength of the vortices at a glven station, x,
can be related to the normsl force on the portion of the cylinder between
the origin of -the vortices and station b'd by the Khtta-Joukowsky 1aw
(seey e.g., ref. 7). Thus,

(Ney1), = elxVo(2E1 - 282)x - (8)

For the considered theoretical model, which includes & slender ogival

nose with a pair of symmetrical vortices originating on the cylinder or
at the nose-cylinder junction, the total normal force at a given x
station can be approximated by - =

Nx = (Neyl)y + Nnose = PI'xVo(261 - 282)x + 2agcA (9)
Thus, <0Nx 2% A
/
Kj_) . (10)
Vo 4(51 - §2)

where Cy, is the coefficient of the total normal force developed from

the nose vertex to the body-length station considered. The normal-force
coefficient for the nose portion of the body is the slender-body result
of Cy = 2a. For this theoretical model eny so-called "1lift carry-over"
from the nose onto the cylinder is neglected. The 1ift on the eylinder
is considered to be only that resulting from the motion of the vortices
relative to the cylinder (the slender-body value of 1lift being zero over
the cylinder). Expeérimentel data (ref. 2), however, indicate that, even
for the body at low asngles of attack (of the order of 50), there is a
moderate amount of 1lift carry-over from the nose onto the cylinder.

Studies of these data have shown that this lift carry-over can be accounted

for, at least in part, by the use of Tsien's potential theory (ref. 8) in
preference to slender-body theory. Hence, a preferred hybrid expression

relating vortex strength and position to normel-force coefficient can be

written as

Cy - Cn.) A :

r < P X

Sn—— = -

<Vo A (11)

L(ey - E2)y
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where Cy .k is the normal-force coefficient computed by Tsien's theory.

The use of equation (10) or (11) is, of course, tentemount to assuming
that only the so=-called viscous crossflow component of the body normsal
force contributes to the vortex strength.

Vortex orlgins.- No theoretical procedure is knmown for predicting
the positions of the origins of the vortices (that is, the positions at
vhich the vortices leave the body surfece). Qualitatively it is known
that as the angle of attack of the body is increased, the boundary layer
first begins to thicken on the downstream lee side. Thils is followed
by separation of the boundaery layer and formation of two reglons of con-
centrated vortlcity in the wake on the lee side of the body. Moore
(ref. 9) has studied the three-dimensional boundary-layer flow on inclined
cones and has found that on the lee side of the cone, unique solutions
to the classical boundaery-layer-flow equations are limited to smell
angles of attack. Beyond a certein criticel angle of attack, dependent
on Mach number and cone angle, the boundary leyer cannot remain thin.

The critical sngle of attack is of the seme order as the semlvertex angle
of the cone. Moore presumes that for angles of attack in excess of this
eritical value, the flat vortex bubbles which have formed on the lee side
of the cone must be in the process of forming s symmetric pair of strong
vortices. Similar considerations probebly apply for the flow about
inclined bodies other than cones. Consideration of pressure distributions
along stresmlines on an inclined cylinder indicate that, becsuse of the
adverse pressure gradient, there is a tendency toward separation and
formation of a vortex bubble even at very low angles of attack. However,
as yet there is no method for calculating the position on an inclined
body at which coelescence of the vorticity has progressed to such a degree
that a symmetric pair of steady vortices are formed. Hence, experimental
measurements (some of which are presented in this report) must be relied
upon entirely.

Vortex paths.- With the aid of equations (2) and (3) the paths of
the vortex centers can be computed by stepwise procedures if the origins
and strengths of the vortices sre known. For example, 1f a vortex posi-
tion (&,n) end strength (I'/Vy) are known, values of w/Vy and v/Vy indyced
st the filsment of the vortex can be computed by equations (2) and (3).1
If in a given time interval At +the vortex filament can be considered
to move (with respect to the body) an axial distance Ap = VyAt, a ver-
tical distance An = wAt, end a latersl distance Af = vAt; then,

an = Ap(w/Vo) (12)
At = Ap(v/Vo) (13)

1The more complex expressions, equations (6) and (7), also can be
used; however, essentially the seme results are obtained with eque-

tions (2) and (3).

and
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Hence, for a small incremental distance Ay, a new vortex center position
can be estimated by the use of equations (12) and (13). Then if the
strength of the vortex is known at this new body length station and at
succeeding stations, this computation process may be repeated a sufficilent
number of times to determine the path. If the normsl-force distribution
over the body is known,2 the vortex strength at each Au interval can be
estimated by equation (11). The proper spacing Ap. of successglve stations
should be, of course, checked by trial and error. For the stepwlse cal-
culations mede for this investigation the experimental normel-force dis-
tributions of reference 2 have been used.

DISCUSSION

In this section of the report the pressure distribution and pitot-
bressure dats are used to illustrste the flow conditions on the body
which lead to the formation of the vortices and to isolate the positions
along the body at which the vorticity is concentrated into two well~-
defined vortex centers. As an aid In assessing the usefulness of the
gimple theoretical flow model previcusly outlined, comparisons of computed
vortex paths and downwash dlstributions sre made with the resulits of the
experimental measurements.

Experimentsl Pressure Distributions and Vortex Positions

From a study of the pressure distributions on the surface of the bady
and pltot-pressure distribubions in the flow field on the lee side of the
body, the positions at which the body vortices originated and the paths
of the vortices downstream from the origin can be determined. The body
pressure distribution deta and the pitot-tube survey date have been plotted
in figures 2 through.6 to show constent pressure contours for each of
the test conditions.® On the contour plots of body pressure coefficient,
lines are shown to indicste the circumferential positions of minimm
pressure coefficient (CP minimm with respect to 6), the approximste
.flow-sepearation positions, and the circumferential locations of the vor-
tex centers. The minimum pressure positions, of course, are obvious.

The flow-separstion and vortex-center positions will be discussed in the
foliowing paragraphs.

2If the normal-force dilstribution is not kKnown from experiment it can
sometimes be computed by a semiempiricsl method (see, €.8., ref. 2).

SSince the pltot-pressure tubes were always alined with the body axis
and not with the local stream direction, some of the indicated loss in
pitot pressure results from the large inclination of the stresm relative
to the axes of the tubes.
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The pltot-pressure plots are very useful for determining the positions
of the vortex centers. The vortex center positians, Indicated in figures 3
through 6, are assumed to be at the spproximaste centers of the smallest
closed comtours of Pp/?to' It is Interesting to note that these posi-
tions, when superimposed on schlieren photographs of the flow field taken
with the knife edge horizontal, coincide with the Iinner edges of the dark
vortex regions. (See, e.g., fig. T.)

The conditions leading to flow separation and subsequent formation .
of the vortices are perhaps best 1llustrated by typical pressure distribu-
tions slong spproximate streamlines on the cylindricel afterbody (fig. 4).%
For o = 15° and Re = O.39><lO8 per inch, pressure distributions slong
the streamlines shown in figure 4 are plotted in figure 8. Along the
gtreamlines the pressure decreases rapidly proceeding from the windward
toward the leeward side of the body. A minimm pressure is reached neaxr
the side of the body. This is followed by a rising pressure (adverse
pressure gradient) and eventusl flow sepsration. The flow separation
position is assumed to coincide with the point at which the pressure then
beglins to decrease. Followling flow separation & second minimum pressure
occurs (except for streemline a) at the approximate eircumferential
location of the vortex center. (Although the identity of the individual
streamlines is lost beyond the flow separation point, these plots have
been continued by dashed lines Into the separeted flow reglon to show the
influence on the pressure distribubions of . the secondary flow associated
with the vortices.) '

From a study of the differences between the pressure distributions
along the various streamlines coupled with a study of the pitot-pressure
plots for various x/d positions, the approximate region of the origin
of the vortices can be determined. For Instance, for the pressure dis-
tribution slong the streamline labeled "a" there is no clear indiecstion
of flow separstion, nor is there any second minimum pressure that has
been associated with the location of the vortex core. However, along
the streamline lebeled "b" there is an indication of & vortex forming at
an x/d position of sbout 4. Since the pitot survey date (fig. 4) show
that the vortices are clesrly developed at x/d = 5.8, it is reasonsable
to assume that the vortices originated at ebout 4t or 5 dismeters fraom the
nose. From similar studies of the data for the other angles of attack
(5°, 10°, and 20°) additional informstion concerning the approximate
origin of the vortices has been determined. In figure 9 the spproximate
length positions at which the effects of the vortices were first discern-
ible In the pressure distributions are plotted as a function of angle of
attack.

A considersble effect of Reynolds number upon the flow sbout the
inclined body of +this investigetion was previously reported in reference 2.
4These gtreamlines, which were derived simply from consideration of
incompressible potential flow over sn inclined circular cylinder (with
no vortices considered), are defined by 6 = 2 tan~1(cet®x/d),

RN R
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The changes in the pressure distribution and flow-separation character-
istics at o = l5° for an increase in Reynolds number from 0.13x108 to
0.39x10° per inch can be seen by comparing figures 5 and 4. Although
there is a significant effect upon the pressure distributions, comparison
of corresponding pitot-pressure plots reveal only a small effect upon the
vortex positions. For the lower Reynolds niiiber tests the positions of
the vortex centers at x/d = 5.8.were approximately 0.l body radius far-
ther from the body surface and sbout 5° closer to the vertical plene of
symmetry than for the higher Reynolds number. At the base of the body,
x/d = 10.3, the loc¢ations of the vortices were practically identical for
both Reynolds numbers. T T

Vortex Strengths Computed From Experiment

To provide values of vortex strength to sid in assessing the methods
of computing the vortex paths end the downwesh distributions, the strengths
of the vortices at various body length positions have been computed by
equations (10) and (11). They are presented nondimensionally in figure 10
as I'/2reVo, as a function of x/d. The calculations have been made using
the experimentel normel-force distributions of reference 2 with both
measured and computed vortex positions taken at various body length sta-
tions. The measured vortex positions were obtained from figures 3 through
6. Where the vortices are shown to be glightly asymmetric, average values
of the positions have been used. The strengths obtained using computed
vortex positions (discussed later) result from application of the stepwise
path calculation method previously outlined.

In general, the strengths of the vortices would be expected to
increase with distance downstream. It is believed that the small decreases
in some of the computed vortex strengths with distance downstream are a
result of approximstions in the methods used . and do not actuslly exist.

Comparisons of Theoretical and Experimental Vortex Paths

Theoretical and experimental vortex path positions are compared in
figure 1l. The experimental positions were taken from the piltot-pressure
contour plots (figs. 3 through 6). The theoretical path positlions were
computed by the stepwise method (previously outlined) in which the vortex
strength is computed by equation (11) and veries with distence x down-
stream (as shown in fig. 10). In addition, caelculaetions were made by the
stepwise procedure but with the vortex strength held constant over the
path length snd given by P/Vo = 4&@, an assumed relation to be mentioned
later. The Foppl equilibrium positions for vortices in the crossflow .
plene of a two-dimensidnal cylinder (ref. 5, P. 223) are also presented
in figure 11 merely for reference. All stepwise path calculations were
started at the most forward body length positions at which pitot-pressure
surveys revealed the presence of well-defined vortices. Incremental
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length spacings (Auts) of 25 percent of the body radius were used, although
Mu's of 50 percent of the radius were found to be satisfactory. For the
stepwise method in which T'/V, varies with x, the initisl vortex
strengths at the starting positions were assumed to be the same as those
computed using the measured vortex positlons of this investigation and
the normel-force distributions in figure 8 of reference 2. In general,
the paths computed by this method are in very good agreement with exper-
iment. However, for a = 15° and Re = 0.39x10® per inch, it appears that
the initial vortex strength calculated from experiment is too large, and
as a result the computed vortex position initially moves too far in the

¢ direction and not far enough in the 7 direction (as shown in the end
view of fig. 11(b)). However, with increase in distance downstream the
strength computed by the stepwise method decreases at a sufficient rate
(see Pig. 10) so that the computed path agrees reasonably well with
experiment even though the initial vortex strength seems much too large.
For the other test conditions the initlel strengths seem to be about
right, and the sgreement between the computed and measured path positions
is very good.

Further investigation into the computation of the paths revealed
that the vortex strengths only had to be approximated in order to compute
the paths reasonsbly well. In fact, it was found that the strengths could
be assumed to remain constant over the path lengths for each angle of
attack. For example, at all «a's +the paths were satisfactorily computed
(see Pig. 11) by essuming the strengths to be given by T[/Vo = lax, an
expression which was merely chosen to give the correct value of strength
(according to £ig. 10) for «o = 10° but which underestimates the strengths
for 15° and 20°.

It is interesting to note that, although there was a considersable
effect on the body loading at 15° angle of attack due to change in
Reynolds number from 0.13x10%° to 0.39x10° per inch, there was only a small
effect on the vortex positions, and the vortex paths for both Reynolds
numbers can be computed reasonably well. Although there may he larger
effects on the paths due to greater changes in Reynolds number, the data
of this investigation indicate that the effect of Reynolds number on the
paths need be considered only in determining the proper starting positions.
As yet, no reliable solutlion to the sterting problem has been determined.

Comparisons of Theoreticel and Experimental Downwash
Distributions Through the Body Vortices

Comparisons of theoreticael and experimental downwash angle distribu-
tions along a line through the body vortices at varlous length stations
and at angles of attack of lO°, l5°, and 20° are presented in figure 12.
(Since the downwash surveys were made slong horizontal lines passing
just a little above or below the vortex cenmters, the z/a survey locations



16 NACA RM A55E31

are not quite equal to the 7/a vortex center locations shown in fig-
ure 12.,) For the test conditions of this investigation the effect on

the downwash distributions due to change in Reynolds number was small.
Typical compsrisons of downwash distributions for Reynolds numbers of
0.13x10%® per inch and 0.39x10® per inch are shown in figure 13. Since
the Reynolds number effects were small, only data for one Reynolds number
(Re = 0.39x10° per inch) have been used for the comperisons with theory.

The compsrisons of theory with experiment (fig. 12) show that the
downwash distributions computed using only the potential flow around the
cylinder with l"/VO = 0 are completely erroneous; whereas, the distribu-
tions computed with the inclusilon of a symmetrical pair of potential
vortices (and images) superimposed in the flow field agree well with
experiment except between and close to the vortex centers. The downwash
distributions which include the effects of potentisl vortices (see eq. (2))
were computed with velues of vortex strength taken from figure 10
(eq. (11)) end also from the assumed relation [I'/Vy = lac. Except for
a = 20° at x/d's grester than 6.7 where the distributions camputed
with P/Vo = 4aa differ sppreclably from experiment, sbout the seame
agreement between theory and experiment is obtained with either method
of estimating the strength. This, of course, is not surprising since
the values of vortex strength from the assumed formule and from experiment
only differ markedly for a = 20°.

Although the distributlions computed with potential vortices super-
imposed in the flow fleld agree well with experiment at lateral positions
(y's) greater than sbout 1.5 body radii from the vertical axils of symmetry,
the agreement near the vortex cores is poor. Close to and through the
vortex cores the experimental distributions can be more neasrly duplicated
by the assumption of viscous instead of potential flow vortices (see
eg. (6)). This is demonstrated clearly in figure 12(b) for o = 15° at
x/d = 8.8. For the computed distributions in figure 12(b) all of the core
radii (including images) were assumed to be equal and of the same mag-
nitude as the core radii estimated from the experimentsl distribution
(ry/a = 0.28, the y/a distance from the vortex center to the maximum
negative value of €). Theoretically, the size of a core radius can be
considered to be a simple function of the kinematic viscosity and the
time of development of the vortex (see eq. (5)). However, -without &
clearer understanding of the time history and viscosity of the vortices,
it is difficult to make & logical estimate of the core size. For example,
the product vt computed from free-stream conditions indicates that
viscoslty is of minor importance, since the resulting magnitude of 1,
by equation (5) is negligibly small compared to the value indicated by
experiment.

At a = 20° the agreement between theory and experiment is somewhat
adversely affected becasuse of the effect of wake shock waves (see
figs. 12(d), (e), (f), and (g)). These shock waves, which have been
observed in previous visual studles of the weske shed from lnclined

g
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flat-nosed cylinders and pointed bodies (refs. 10 and 11), apparently
are formed when the crossflow Mach number (Mosin a) exceeds sbout 0.5.
The downwash data indichte that these waves move outboard and towsrd
the windward side of the body with lncrease in distance downstream.

CONCLUSIONS

A body with a fineness-ratio-3, circular-arc, ogival nose tangent
to a eylindrical afterbody T.3 diameters long has been tested in the
Ames 1- by 3-foot supersonic wind tunnel No. 1 at s free-stresm Mach
number of 1.98. Pitot-pressure distributions in the flow field, pressure

‘distributions over the body, and downwash measurements through the body

vortices have been obtained for angles of attack to 20°. Pressure dis-
tributions on the body surface and pitot-pressure contours in the flow
field have been used to determine the approximate positions at which the
vortices left the body surface and thelr paths downstream. An anslysis
of these data in conjunction with a simple theoretical flow model, which
has been outlined in the report, has led to the following conclusions:

l. The paths of symmetrically shed body vortices can be computed
quite accurately by the use of a simple stepwise method. However, in
the application of this method, a knowledge of the body normal-force
distribution and the starting positions and strengths of the vortices
is required. Additional resesrch on the problem of predicting the start-
ing positions and strengths of the vortices is necessary.

2. Although not confirmed by detailed measurements of the flow field,
it appears that the strengths of the concentrated body vortices can be
estimated from the normsl-force distributions and vortex positions.

3. Flow angle distributions through the body vortices computed by
the potential flow ebout a cylinder are completely erroneocus; whereas,
distributions computed by sssuming a pair of symmetric potential vortices
(and images) superimposed in the flow field agree well with experiment,
except between and through the vortex cores.

Ames Aeronsuticsl Leborstory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., May 31, 1955




18

10.

ll.

%‘ NACA RM ASSE31

REFERENCES

Nielsen, Jack N., Kaattari, George E., @nd Anastasio, Robert F.:
A Method for Calculating the Lift and Center of Pressure of Wing-
Body-Tail Combinations at Subsonic, Transonic, and Supersonic
Speeds. NACA RM A53G08, 1953. o _ -

Perkins, Edward W., and Jorgensen, Leland H.: Comparison of Exper-
imental and Theoretical Normal-Force Distributions (Including
Reynolds Number Effects) On An Ogive- Cyllnder Body at Mach Number
1.98. NACA RM A5hH23, 1954, _

Gowen, Forrest E., and Perkins, Edward W.: A Study of the Effects
of Body Shape on the Vortex Wekes of Tnclined Bodies at a Mach
Number of 2. WNACA RM A53I17, 1953. =

Brown, C. E., and Michael, W. H., Jr.: Effect of Leading-Edge Sepa-
ration on the ILift of a Delta Wing. Jour. Aero. Seci., vol. 21,
no. 10, Oct. 1954, pp. 690-694. '

Lamb, Sir Horace: Hydrodynamics. Sixth Ed., Dover Pub., 1945.

Roshko, Anatol: On the Development of Turbulent Wekes from Vortex
Streets. NACA TN 2913, 1953. -

Lagerstrom, P. A., and Grsham, M. E.: Aerodynamic Interference in
Supersonic Missiles. Douglas Aircraft, Inc., Santa Monica.
Rep. No. SM-13743, July 1950.

Tgsien, Hsue-Shen: Supersonic Flow Over an Inclined Body of Revolution.

Jour. Aero. Sci., vol. 5, no. 12, Oct. 1938, pp. 480-483.

Moore, Franklin K.: Laminar Boundery L&yer on Cone in Supersonic
Flow at Large Angle of Attack. NACA TN 284k, 1952.

Hall, I. M.: Experiments on Supersonic Flow Over Flat-Nosed Circular
Cylinders at Yaw. The Philosophical Magazine, Mar. 1954%. Ser. T,
vol. 45, pp. 333-343. -

Seiff, Alvin, Sandshl, Carl, Chapman, Deen R., Perkins, Edward W., and
Gowen, Forrest E.: Aerodynamic Charscteristics of Bodies at '
Supérsonic Speeds - A Collection of Three Papers. NACA EM A51J25,

1951.




NACA EM ASSE3L

0.39x10% PER INCH

Re

~ EXPERTMENTAL DOWNWASH ANGLES MEASURED THROUGH MODEL VORTICES AT MACH NUMBER 1.98,
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TABLE II.- EXPERTMENTAL. DOWNWASH ANGLES MEASURED THROUGH MODEL VORTICES

AT MACH NUMBER 1.98, Re = 0.13X10® PER INCH

(a) (b)
@ = 15% x/d = 8.8; | = 15°% x/d = 10.2;
z/e = 1.61 z/a = 1.82
y/a e, deg y/a €; deg
-6.75 -0.95 -6.40 -0.80
-6.40 -1.05 -5.70 -.80
~5.67 -1.25 -4.98 -1.30
-4,98 -1.50 -4,27 -1.70
-4,27 -1.75 -3.56 -2.40
-3.56 2,45 -2.85 -3.38
-2.84 -3.20 -2.k4g -4.20
-2.49 -4.02 -2.13 -5.38
-2.13 -5.19 -1.78 -7.10
-1.78 -6.90 -1.42 -9.73
-1.kh2 -10.06 -1.24 -9.90
-1.24 -10.83 -1.07 -9.96
-1.07 -10.84 -.89 -9.12
-.89 =10.15 -.80 -L.52
-.T1 6.83 -.T1 6.7T
-.71 6.88 -.62 16.07
-.57 21.90 .38 24.33
-.36 19.91 <4k 22.33
-.18 24.88 .53 16.82
0 2k, 92 .62 13.92
.18 25,29 CTL 5.31
.36 19.93 .89 -9.00
.36 20.48 1.07 -9.23
.53 17.62 1.24 -9.10
ol 6.31 1l.hke -8.83
.89 -T.60 1.78 -6.60
1.07 -9.81 2.49 -3.86
1.24 -10.08 3.20 -2.57
l.k2 -9, Ik 3.91 -1.88
1.78 -6.65 4,63 -1, 44
2.13 -5.05 5.34 -1.05
2.h9 -3.80
2.84 -3.25
3,56 -2.35
k.27 -1.65
4,98 -1.30
5.33 ~1.30
5.67 -1.30
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Figure 2.=- Experimental contours of pressure coefficient on the body and

pitot to free-stream total-pressure ratio in the flow field, Mg = 1.98;

Re = 0.39x10% per inch; a = 5°.
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Figure 3.- Experimentsl contours of pressure coefficient on the body and
pitot to free-stream total-pressure ratio in the flow field, My = 1.98;
- Re = 0.39x10%® per inch; o = 10°.
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Figure 5.- Experimental contours of pressure coefficient on the body and
pitot to free-stream total-pressure roatio in the flow field, Mo = 1.98;

Re = 0.13x108 per inch; a = 15°.
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Figure T7.= Typical schlieren photograph of flow field with superimpogsed vortex path as measured
from pitot-rake surveys, a = 15; Re = 0.39x10° per inch; Mg = 1.98.
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Mo = 1.98.
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Figure 11.- Comparisons of computed and experimental vortex center positions s Mg = 1.98.
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